Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics.

نویسندگان

  • Vivek Singh
  • Yixuan Yu
  • Qi-C Sun
  • Brian Korgel
  • Prashant Nagpal
چکیده

While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of photonic bandgap on luminescence from silicon nanocrystals.

The modification of the luminescence of silicon nanocrystals experiencing the effect of a photonic bandgap in a 2D photonic crystal was investigated. The time-integrated photoluminescence spectra detected in the plane of the photonic crystal revealed a dip in the light emission corresponding to the wavelength of the bandgap, whose position changes according to the geometry of the prepatterned p...

متن کامل

Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination

We have studied ultrafast carrier dynamics in oxidized silicon nanocrystals (NCs) and the role that surface-related states play in the various relaxation mechanisms over a broad range of photon excitation energy corresponding to energy levels below and above the direct bandgap of the formed NCs. Transient photoinduced absorption techniques have been employed to investigate the effects of surfac...

متن کامل

On the method of photoluminescence spectral intensity ratio imaging of silicon bricks: Advances and limitations

Related Articles Investigation of the thermal charge “trapping-detrapping” in silicon nanocrystals: Correlation of the optical properties with complex impedance spectra Appl. Phys. Lett. 101, 242108 (2012) Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot AIP Advances 2, 042162 (2012) Calibration of the photolumines...

متن کامل

Hybrid solar cells from P3HT and silicon nanocrystals.

We are reporting new hybrid solar cells based on blends of silicon nanocrystals (Si NCs) and poly-3(hexylthiophene) (P3HT) polymer in which a percolating network of the nanocrystals acts as the electron-conducting phase. The properties of composite Si NCs/P3HT devices made by spin-coating Si NCs and P3HT from a common solvent were studied as a function of Si NC size and Si NC/P3HT ratio. The op...

متن کامل

Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

In this work we report on temperature-dependent photoluminescence measurements (15-300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 24  شماره 

صفحات  -

تاریخ انتشار 2014